A Rule Based lIterative Affix Stripping Stemming
Algorithm For Tamil

Damodharan Rajalingam
ABSTRACT

Stemming is an important step in many of the Infation Retrieval (IR) and Natural Language Proces¢MLP) tasks.
Stemming reduces derived forms of words to a commoh When used in IR it increases the recallgrerince. Stemming
algorithms are very specific to a languages a®udifft languages have different rules for derivatior a language to have
better IR and NLP tools stemming algorithm is aibagcessity. There is currently no open implent&rnaof a stemming
algorithm available for Tamil. There might be priepairy products that include a stemming algoritlon their uses but
having an openly available version will help in ieqentation of IR and NLP tools for Tamil.

This paper discusses about the implementationstémming algorithm that is available[1] as OpenrSelSoftware. The
algorithm implemented is a rule based iterativixafripping algorithm. The algorithm is implemedtesing Snowball[2], a
string processing language specifically used fgolémenting stemming algorithms. The algorithm westdd against the
Tamil WordNet data. The results of these testabs@ presented in this paper.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing: Linguistic processing, |.2.MNatural Language Processinfj Text analysis

General Terms
Algorithms, Design, Languages

Keywords
Stemming
1 INTRODUCTION

The problem of information storage and retrievad baen receiving more and more attention in thentegears. A more
obvious example is how much people depend on watzlsengines like Google, Yahoo etc in their evaptife. With the
growth of the World Wide Web the amount of inforioatbeing generated is growing at a tremendous Téiis has created
a need for faster and better information retriessdtems. The requirement for a good retrieval systenot limited to
internet only. Users are having a lots of datahigirt personal computers that the old method of taaimg hierarchy of
folders is not a viable way of finding the requiiatbrmation. So we have desktop search tools winidbx the data in one's
personal computer. Information explosion and needirtd relevant information from a huge collectia driving the
improvements in Information Retrieval field.

One technique to improve the Information Retriggatformance is to provide the users with ways rdifig morphological
variants of search terms. If, for example, a us¢ers the term 'stemming’ as a part of the queig,possible that he/she is
also interested in variants such as 'stem' anirsez’. This increases the recall of the IR systsr@mming is also helpful in
reducing the size of the index as we need not iradlethe morphological variants of a word. Mostthé times it is good
enough to index the stem of the word.

Most of the research on informational retrieval bagen based on English as the reference languégewgih most of the
research in IR is language agnostic there are sye@s which are specific to language. Stemmingridthges is one such
area. Stemmers for different languages have beegiafeed in the recent years. There is however emising algorithm
publicly available for Tamil language. With the geaof internet reaching far corners of the worldgde are now able to
create and share content in Tamil. Having good Kid?s will help in developing better Information tReval systems for

28



Tamil content and also in many other text and damninprocessing tools. Stemmer is one such basicthdlPand is part of
other complex tools.

The paper is organised as follows: Sections 2 ag/& a brief overview on the structure of Tamilrd® and Stemming
algorithms respectively. Section 4 discusses thgigdeof the stemming algorithm and section 5 gietais about
implementation. The evaluation of the algorithmpigsented in section 6 followed by related workséttion 7 and
conclusion in section 8.

2 STRUCTURE OF A TAMIL WORD

From Wikipedia[4]: “Tamil employs agglutinative gnanar, where suffixes are used to mark noun clagsper, and case,
verb tense and other grammatical categories. Taonills consist of a lexical root to which one or mmaeffixes are attached.

Most Tamil affixes are suffixes. Tamil suffixes cha derivational suffixes, which either change plaet of speech of the
word or its meaning, or inflectional suffixes, whimark categories such as person, number, moosk,tetc. There is no
absolute limit on the length and extent of agghtiion, which can lead to long words with a largenber of suffixes, which
would require several words or a sentence in HmgliBo give an example, the wordokamuiyatavarkatikkaka
(Curasyywrseuisenssrs) meansfor the sake of those who cannot,gmd consists of the following morphemes:

poka mui y ata var kal ukku aka

go | accomplish| word-joining lettdr negation nominalizer plural marker to for
(impersonal) | he/she who doep

The aim of the stemming algorithm is to strip theséra constituents and map them to a stem comelspg to the root
word. Ideally all the words with same root wordswld be stripped to same stem.

3 STEMMING ALGORITHMS

A stemming algorithm is a computational procedutectv reduces all words with same root (or if prefixare untouched
same stem) to a common form, usually by strippiacheword of its derivational and inflectional suéf§[3]. Simply stated
stemming algorithms are used to group words ths¢ #rom same stem or root. The result of a stergraigorithm need not
be identical to the morphological root of the wdri usually sufficient that related words maghe same stem, even if this
stem is not in itself a valid rooThe stemming process is also calledcasflation sometimes. There are several types of
stemming algorithms based on their approach, acgwt like: Brute force algorithms, Affix stripginalgorithms n-gram
based algorithms, Lemmatisation algorithms, Staahatgorithms etc.

3.1 AFFIX STRIPPING ALGORITHM

Affix removal algorithms remove suffixes and/or fixes from terms leaving a stem. These algorithmsetimes also
transform the stem. A simple example of an affiipging algorithm is the one that remove the pldioains by Harman [5]

If a word ends in "ies" but not "eies" or "aies"
Then "ies" ->"y"

If a word ends in "es" but not "aes", "ees", or Sbe
Then "es" ->"e"

If a word ends in "s", but not "us" or "ss"

Then "s" -> NULL

Affix removal algorithms can be simple removal tarative. In an iterative algorithms affixes arenoxved until no more
affixes can be removed.

29



4 STEMMING ALGORITHM DESIGN
4.1 WHY AN AFFIX STRIPPING ALGORITHM?
An affix stripping algorithm was chosen for theléoling reason:

1. An affix stripping algorithm does not required&tionary. In Tamil the suffixes are attachedan order. So a
stemming algorithm which stems most of the wordistetorily can be designed without the help dficionary.

2. The algorithm is very fast. The algorithm need lookup any dictionary or do complex statistiaahlysis based on

any collected corpus. It just works on the striodp¢ stemmed. So it is very fast.

3. Since it does not require any supporting dhtaalgorithm can be run on any device. For exanplport any
dictionary based stemmer to a low memory devicedibgonary might need to be trimmed down thereégucing
the accuracy of the stemmer. But an affix stripplgprithm does not have any such memory requirésraamd does
not hold much data during its operation

4. There is lack of quality corpus to train stided algorithms.
4.2 Overview of the algorithm

In Tamil suffixes are used for many things likegenplurality, person etc. So the suffixes are peouinto categories and a
routine is defined for each category to handlerdmoval the respective suffixes. After removal uffis for each category

there is routine to fix or recode the ending of Ward to make it consumable for the next routinksofefore stripping the

suffix every routine checks for the current sizéhaf string.

As shown in Figure - 1, first the prefixes are rewub followed by the suffixes. Every suffix stripgimoutine checks for the
length of the string before proceeding and afteraéing a suffix calls the routine responsible figirfg the endings.

4.3 Prefix Removal

There are two routines in the algorithm to handigfipes. One is for handling the prefix in the dimss. Eg.stésmsvid
(which period?). wrevin. Another one is for removing the pronoun prefixeg, @) ande_.Eg. giésrevib (that period).-

&T6VID
After removing the prefixes another routine handieisg the start of the word. The above prefixagaducess when the

root word starts with a vowebu in the start of the word cannot combine with certabwels. In such cases this routine
substitutes with appropriate vowel as the starting.

Figure 1 - Flowchart of stemming algorithm for Thmi
4.4 Fixing the ending

When a suffix joins a root word one of the folloginan happen
1. New letters are introduced

2. Some letters are removed

3. The letters are transformed

4. Joins naturally without addition/removal
fix_ending routine tries to handle these modificas before the next suffix removal routine is ahlle

If the join had caused new letters to be introdudbis routine removes it. For example vallinam smmants appear as
conjunctions in many cases. A normal word will eotl with a vallinam consonant.

FHL&S L& S
original word suffix stripped vallinam consonanin@ved

30



If the join has caused some characters to be reunibVeaves it since it is possible for more thare walid character to be

appropriate candidates.

If the join has transformed some of the charadtéries to recode it. It currently cannot recoadirsuch transformations. Eg.

L0 & Sl edT Tdhd LOTLD
original word suffix removed end recoded

The fix_ending removes the conjunctions and rectidesransformed letters.
4.5 Suffix removal

The stemming algorithm handles different kindsudfiges. They are discussed in the following seatsio
4.5.1 Question suffixes

This routine removes the suffixes. The suffixes.gyesr, sp.

556007 630T 60T T 856307 63T 63T
Is it Kannan Kannan

4.5.2 Conjunction suffix

This routine removed the suffaip

S| LD S| euedt
Him and Him

4.5.3 Common words
This algorithm tries to remove some of the commands that are attached to verbs or nouns. Theseocauffixes and are
proper words.

9j6ussilsLevTs S| 66T
without him Him

4.5.4 Case suffixes

Tamil case suffixes are attached to the ends ohsido express grammatical relations (e.g., subgietct object, etc.) as

well as meanings typically expressed in Englisbtlgh pre-positions (e.g., 'in’, 'to’, 'for’, '‘fromic.).

oeuesiip (with him) ojeuet (him)

wrsglsv (in tree) wrip (tree)

4.5.5 Plural suffix

The plural suffix in Tamil isseir.

LD I BI&S 6T O LD
Trees Tree

4.5.6 Imperative suffixes

These are used to command a person.

FmesorLi) & T630T
show me see

4.5.7 Tense suffixes

This routine removes tense indicating suffixeglsb include person suffixes.

e M
leaving leave

Apart from the standard suffixes the routine alsnovedosreisr@ and similar words.

31



4.6 Minimum length criteria

Being a strong stemmer it has a tendency to ovarstame words to single letters. To prevent thigyeveutine checks for
the length of the string. Currently the minimumdénis set as 4 characters. These are not 4 chesagxactly since in
Unicode a meaningful character can be representeddoe than one code points. So the check madeeimmplementation
actullay only verifies the number of codepointshie string than the actual meaningful charactetso Ahe routine which
fixes the ending does not check for the lengtthefdtring. So it is still possible to get a stenfeofyth one character.

5 ALGORITHM IMPLEMENTATION

The algorithm described in the previous section imgslemented using Snowball language. Snowball§2a ismall string
handling language mainly designed to define stergralgorithms in a natural way. The language wasteceby Dr. Martin

Porter when he saw various buggy implementatiortisofamous Porter algorithm [6] for English. Tleasons for errors in
the implementation can be grouped into followingsunderstanding of the original algorithm, erroms hiandling the
encoding and the programmers urge to improve tigerithm. The language was mainly developed to awaidh

implemetation errors and it widely used now for &leping stemming algorithms. Stemming algorithmsrf@any languages
like German, French, Turkish etc have been implethasing the Snowball language.

The code written in Snowball cannot be used withebtprograms as such. We use snowball compilerotvart the
Snowball code to any other programming languageofAsow Snowball supports C and Java output. Utileggenerated C
code we can create bindings for many other progiagmanguages. The algorithm implemetor is now Imathered about
implemeting algorithms in various other programmiagguages. It is also possible to extend the satvdompiler to
generate code in other programming languages also.

6 EVALUATION

6.1 Tamil WordNet

Tamil WordNet[8] is an attempt to build a lexicatwork for Tamil language along the lines of theyish WordNet so that
it can be used as a tool for enhancing the perfocmaf MT systems involving Tamil. The wordnet distavailable for free
as a sql dump. It has more than 4lakh words watimibrphological root. The data available is codeénglish transliteration.
A transliterator program was written to convertatUTF8 data. Some of the issues with data aretythimg errors and
inclusion of many foreign words and non classicainil words.

Figure 3 - Database Schema of Tamil WordNet
6.2 Correctness of the algorithm

The correctness of the algorithm is usually meakirg identifying the number of semantically relatedrds that are
correctly assigned to the same conflation classti#er measure is to see how close the stem is dnghological root of the
word.

6.2.1 Variation with morphological root

The stemming algorithm was run against the cobbecin Tamil WordNet. The Hamming distance betwdendutput of the
stemming algorithm and the morphological root wasasured. The results are listed in the table below.

Table 1 - Hamming distance from morphological root

Measure Value
Mean 1.9237
25th percentile 0
Median 2
75th percentile 3

6.2.2 Stems per morphological root
In this test we measure the number of stems peplmodogical root. The test counts the number of steneated for the
words derived out of same root. This describes homectly we assign the conflation class for thigated words. Higher

number indicates that the algorithm is not stemntiregsemantically related words to same conflatiass.

32



Table 2 - Stems per morphological root

Measure Value
Mean 1.7383
25th percentile 1
Median 1

75th percentile 1

For 75% of the root words the number of stems iSd.the stemmer is doing a good job of mappinglaimiords to same

conflation class.

6.3 Strength of the algorithm

The amount of change the algorithm causes to trengstring decides the strength of the algorithnstrAng algorithm tries

to remove as many suffixes as possible. A lighihgter usually handles less cases and does not matte modifications to

the provided string.

In their paper "Strength and Similarity of Affix Reval Stemming Algorithms", Frakes and Fox[7] prepdhe following

metrics to measure the strength of affix removilggpdthms:

1. Mean number of words per conflation class - agemumber of words that correspond to the samefstea corpus.
2. Index compression factor - this is the fractiaeduction in the index size achieved by stemmirtgs is given as

3. The number of words and stems that differ - stens may often leave words unchanges. This measucbswords

4. Mean number of characters removed in forminmste

5. Median and mean modified Hamming distance betvtiee words and their stems - Hamming distance doatvstrings of

equal length is the number of character they dferiig at the same position. For the strings afqural length the Hamming

distance is the difference in their lengths are al$ded up.

Table 3 - Modified Hamming Distance DescriptivetStacs

Mean 2.76
Std. deviation 1.97

Minimum 0
25th percentile 2
Median 3
75th percentile 4
Maximum 18

Table 4 - Modified Hamming Distance DescriptivetStacs of some popular stemming algorithms for lisihg Frakes and Fox [7])

Lovins Paice Porter S-removal
Mean 1.72 1.98 1.16 0.03
Std. deviation 1.64 1.92 1.40 0.19
Minimum 0 0 0 0
25th percentile 0 0 0 0
Median 1 2 1 0
75th percentile 3 3 2 0
Maximum 10 13 9 3

Table 5 - Strength description statistics for Tastémmer

Mean Modified
Hamming Distanc

Median Modified
b Hamming Distance

h

Mean Characters
Removed

Compression Factt])r Mean Conflation

Class Size

Word and Stem
Different

2.76

3

2.4

0.65

2.88

86.53%

33




Table 6 - Strength description statistics of someytar stemming algorithms for English (Frakes Bod [7])

Mean Modified Median Modified | Mean Charactefs Compression| Mean Conflatiol Word and Stenl
Hamming Hamming Distanc¢ = Removed Factor Class Size Different
Distance
Lovins 1.72 1 1.67 0.29 1.42 69.4%
Paice 1.98 2 1.94 0.33 1.49 69.5%
Porter 1.16 1 1.08 0.17 1.20 56.2%
S-Removal 0.03 0 0.03 0.01 1.01 3.3%

From the metrics measured above it is evidenttfetdesigned stemmer is a strong stemmer and entlg@accurate. The
data for English stemmers is provided as an inftomaand not for comparison. An apple-to-apple carigpn cannot be
made since the algorithm is for English and usaiferent corpus.

6.4 Shortcomings

Because of the agglutinative nature of the langutaigepossible to form compound words which conebiwo or more stems
into a single word. In such scenarios we will haoefind the word boundaries and identify the indival stems. The
algorithm proposed in this paper does not handié saenarious and is only applicable to non-comgaouords.

7 RELATED WORK

There is a paper published by Vivek Anandan Ramadtaa and llango Krishnamurthi [9] on an iteratsedfix stripping
stemming algorithm for Tamil. The paper is behindpaywall and no further details are available rduay the
implementation and there is no openly availablel@mgntation of the algorithm.

8 CONCLUSION

This paper described the implementation of a raseld iterative affix stripping algorithm and itspiementation using
Snowball language. The evaluation of the algorithes done using the Tamil WordNet corpus. The ctmess of the
algorithm was measured in following ways: 1. Hamgnélistance between the stem and morphological odtilumber of
stems per root. The values obtained for these messndicate that the designed algorithm is redslgnaccurate. The
strength of the algorithm was measure using théoast proposed by Frakes and Fox[7]. The valuesrwatan these tests
indicate that the designed algorithm is a strongmster and it provides good index compression rafiee The

implementation of the algorithm is available in opsource and can be used by other tools that edumil language
stemming.

References

»  https://github.com/rdamodharan/tamil-stemmer

»  http://snowball.tartarus.org/

» Lovins, Julie Beth. "Development of a Stemming Altfun." Mechanical translation and computationadliistics
11 (1968): 22-31.

http://en.wikipedia.org/Tamil_grammar

Harman, D. “How effective is suffixing?”Journal thfe American Society for Information Sciemd® (1991): 7-15
Porter, M. F. "An Algorithm for Suffix StrippingProgram14 (1980): 130-137.

Frakes, William B. and Christopher J. Fox. “Strénghd similarity of affix removal stemming algorite”. ACM
SIGIR Forum37 (2003): 26-30.

http://www.au-kbc.org/research_areas/nlp/projeasitt wordnet.html

vV V V V

Y

» Ramachandran, Vivek Anandan and Krishnamurthi, géan“An Iterative Suffix Stripping Tamil Stemmer”.
Proceedings of the International Conference onrinédion Systems Design and Intelligent Applicati¢®812):
Volume 132, 583-590

34



